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Abstract. Ecosystems are complex systems which can respond to gradual changes of their
conditions by a sudden shift to a contrasting regime or alternative stable state (ASS). Predicting
such critical points before they are reached is extremely difficult and providing early warnings
is fundamental to design management protocols for ecosystems. Here we study different spatial
versions of popular ecological models which are known to exhibit ASS. The spatial heterogeneity
is introduced by a local parameter varying from cell to cell in a regular lattice. Transport of
biomass among cells occurs by simple diffusion. We investigate whether different quantities from
statistical mechanics -like the variance, the two-point correlation function and the patchiness-
may serve as early warnings of catastrophic phase transitions between the ASS. In particular,
we find that the patch-size distribution follows a power law when the system is close to the
catastrophic transition. We also provide links between spatial and temporal indicators and
analyze how the interplay between diffusion and spatial heterogeneity may affect the earliness
of each of the observables. Finally, we comment on similarities and differences between these
catastrophic shifts and paradigmatic thermodynamic phase transitions like the liquid-vapor
change of state for a fluid like water.

1. Catastrophic Shifts in Ecosystems

Several ecosystems are known to display sudden catastrophic regime shifts when exposed to
gradual change in external conditions such as climate, inputs of nutrients, toxic chemicals,
etc. Recent examples illustrating such changes are the shift in Caribbean coral reefs [1, 2],
shallow lakes that become overgrown by floating plants [3], savannahs that have been suddenly
encroached by bushes [4, 5] and lakes that shift from clear to turbid [6, 7]. Such drastic shifts
occur because the ecosystem has alternative stable states (ASS) [8, 9]. In other words, under the
same external conditions the system can be in two or more stable states. Hence, when subjected
to a slowly changing external factor, an ecosystem may show little change until at a critical
point where a sudden transition between two different ASS occurs. The presence of ASS implies
hysteresis, i.e. once a system has gone through a state shift, it tends to remain in the new state
until the control variable is changed back to a much lower or higher level.
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1.1. The Search of Spatial Early Warnings
The simplest models to describe alternative states in ecosystems are mean-field (MF) models.
Neglecting all spatial heterogeneities, these models describe the change over time of some
population that characterizes the state of the ecosystem. These models are easy to analyse
and in cases without significant heterogeneity their predictions are not very different from those
of spatial models. However, in other cases the presence of a spatial dimension profoundly
alters population dynamics or opportunities for coexistence in the real world [10]. In fact,
the oversimplification of MF models casts doubt on whether the occurrence of an alternative
stable state could be an artefact. Moreover, verifications and predictive power with respect
to catastrophic responses to a changing environmental conditions are still scarce for spatially
extensive ecosystems. Analysis of spatially explicit models are relevant, for example, to
understand phenomena like clumping and spatial segregation in plant communities [11]. It
was shown that vegetation patches, which have been extensively studied for arid lands [12],
can be approached as a pattern formation phenomenon [13]-[14]. It has been hypothesized
that vegetation patchiness could be used as a signature of imminent catastrophic shifts between
alternative states [15]. Evidences that the patch-size distribution of vegetation follows a power
law were later found in arid Mediterranean ecosystems [16]. This implies that vegetation patches
were present over a wide range of size scales, thus displaying scale invariance. It was also found
that with increasing grazing pressure, the field data revealed deviations from power laws. Hence,
the authors proposed that this power law behaviour may be a warning signal for the onset of
desertification. These spatial early warnings complement temporal ones like the variance of
time series introduced to detect lake eutrophication [17]. [Eutrophication is an increase in
nutrients leading to an enhanced growth of aquatic vegetation or phytoplankton and further
effects including lack of oxygen and severe reductions in water quality, fish, and other animal
populations.]

1.2. Preventive Actions and Management Protocols
Once you have early warnings of an undesired catastrophic shifts, the next step is to implement
preventive actions to avoid such transitions.

For instance, an example of catastrophic shift is the desertification of arid lands produced
by over-grazing. Management of grazing pressure (either by stock or native species or pests) is
crucial to prevent environmental degradation and to combat desertification. We will illustrate
this by considering the effects of a simple remedial action in a grazing model.

Often the interests of different ecosystem users are in conflict. This is illustrated with lake
management of aquatic vegetation. Nature conservationists prefer a dense vegetation because it
promotes biodiversity and avoids potentially toxic agents like cyanobacteria. On the other hand,
recreational users (boaters, surfers, swimmers) are hindered by aquatic plants. To consider the
interests of all users, harvesting strategies that keep an intermediate level of submerged biomass
might be a possible solution. Hence we will address the problem of lakes that shift among
different primary producers dominance (phytoplankton, submerged or floating plants) through
a another model, a harvesting model for submerged plants.

2. Spatial Ecological Models

2.1. Mean-Field Models
In this work we will consider the spatial version of some popular ecological models in terms
of just a single-species biomass density which grows logistically and whose consumption, loss
or removal (either by grazing, predation or harvesting) is represented by a saturation curve of
Holling type II or III [18].

Both these models, in terms of two parameters, are known to have ASS.
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2.1.1. First Example: Grazing Model A population model initially introduced to describe
grazing systems [19], and later used in general for several ecosystems [20] and in particular for
the case of the spruce budworm [21, 22], involves a Holling type III consumption term. The
corresponding dynamical equation, in terms of all non-dimensional quantities, can be written
as:

dX

dt
= X

(

1 −
X

K

)

− c
X2

1 + X2
, (1)

where X corresponds to the biomass density, K to the carrying capacity, or the number of
individuals which can be supported in a given area within natural resource limits, and c to the
maximum consumption rate.

The r.h.s. of (1) may be thought as the gradient of a potential Vg :

Vg = −

∫

dX

[

X

(

1 −
X

K

)

− c
X2

1 + X2

]

= −
X2

2
+

X3

3K
+ c (X − arctanX) , (2)

so the equilibria or attractors correspond to the roots of the first derivative of Vg.

2.1.2. Second Example: Harvesting Model for Submerged Plants The harvesting of submerged
plants in lakes can be modelled by a Holling type II consumption term [23]. So, again in terms
of non-dimensional quantities, X evolves according to

dX

dt
= X

(

1 −
X

K

)

− c
X

1 + X
. (3)

In complete analogy with the grazing model, the associated potential is given by: Vh =

−X2

2
+ X3

3K + c (X − ln(1 + X)).

2.2. Cellular Automata
In order to take into account the spatial heterogeneity of the landscape one of the two parameters,
the local parameter, is taken as dependent on the position. The other parameter, the global
parameter, is taken uniform in all the system.

A two dimensional spatial version of the previous mean-field models is given by:

dX(x, y; t)

dt
= X

(

1 −
X(x, y; t)

K(x, y)

)

− c
X(x, y; t)q

1 + X(x, y; t)q
+ D∇2X(x, y; t) (4)

where the carrying capacity K(x, y) is a spatial heterogeneous parameter that varies from point
to point (while the parameter c is taken as uniform), the exponent q is equal to 1 (2) for the
harvesting (grazing) model and D is the diffusion coefficient measuring dispersion of X in space.
We simulated these models in a L × L regular square lattice, so each cell, centred at integer
coordinates (i, j), can be associated with a patch of the ecosystem. Each cell is connected to its
four nearest neighbours i.e. the von Neumann neighbourhood is used. In other words, we get a
cellular automaton whose update rule is given by:

X(i, j; t + 1) = X(i, j, t) + X(i, j; t)

(

1 −
X(i, j; t)

K(i, j)

)

− c
X(i, j; t)q

1 + X(i, j; t)q
+ (5)

d[X(i + 1, j; t) + X(i − 1, j; t) + X(i, j + 1; t) + X(i, j − 1; t) − 4X(i, j; t)],

where d is a reduced diffusion coefficient related with D and the lattice spacing a by d = 4D/a2.
Periodic boundary conditions (PBC) were used and L ranged from 100 to 800 (in fact, for
different values of L in this range, no important differences were found). The number of time
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steps is typically 1000. Depending on the ecosystem, each time step could correspond to a day,
or a month, or a year, etc.

The range of values for the model parameters that we use are chosen to contain the region of
alternative stable states determined by the MF equations: the carrying capacity K(i, j) varies
randomly from cell to cell around a fixed spatial mean 〈K〉 (a typical value for this average is
7.5) in the interval [−δK , δK ] where δK = 1.0 − 2.5. Typical values for the consumption rate c
are between 1 and 3 and for for d are between 0.1 and 5.

2.3. Observables
Several quantities can be measured:

• The spatial mean 〈X〉:

〈X〉(t) =
1

L2

∑

i,j

X(i, j, t) (6)

(i and j locate each cell of the array).

• The spatial variance σ2
X :

σ2
X = 〈X2〉 − 〈X〉2 (7)

• The temporal variance σ2
t computed from mean values of X at different times, X̄(t), (here

we take X̄ ≡ 〈X〉(t) ) which is defined as:

σ2
t =

1

τ

t
∑

t′=t−τ

X̄(t′)2 −

(

1

τ

t
∑

t′=t−τ

X̄(t′)

)2

(8)

for temporal bins of size τ (typical values for τ are from 50 to 150).

• The patchiness or cluster structure. Clusters of high (low) X are defined as connected
regions of cells with X(i, j, t) > Xm (X(i, j, t) < Xm) where Xm is a threshold value. There
are different criteria to define Xm, one of which is stated in section 3.1.

• The two-point correlation function for pairs of cells at (i1, j1) and (i2, j2), separated a given
distance R, which is given by:

G2(R) = 〈X(i1, j1)X(i2, j2)〉 − 〈X(i1, i1)〉〈X(i2, j2)〉 (9)

3. Early Warning Signals

We will discuss first the results for the spatial grazing model (q=2 Holling type III consumption)
and in a following subsection we do the same for the spatial harvesting model (q=1 Holling type
II consumption).

For the grazing model the global parameter c is taken as the control parameter, varying with
time, representing a changing grazing pressure. For simplicity, is assumed that the the local
parameter K(i, j) doesn’t change i .e. 〈K〉 = constant = 7.5.

On the other hand, with the harvesting model we illustrate a different situation in which
the environmental conditions are changing much more quickly than the consumption rate. For
example, sudden droughts or floods can produce drastic modifications of the carrying capacity
of a lake. Therefore, we take the global parameter c constant and the local carrying capacity
K(i, j) varying with time i .e. 〈K〉 = 〈K〉(t).
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3.1. Grazing Model
3.1.1. Hysteresis Loops and Spatial Variance Let us start by studying the effect of gradually
varying the stress on the system, increasing c from 1 to 3 in 1000 steps (we checked that reducing
the number of steps to, for instance, 100 produces only slight quantitative changes). figure 1
shows hysteresis cycles and the spatial variance σ2

X for different values of d and 〈K〉 = 7.5
(X(i, j) takes an initial random value in the interval [0, 〈K〉] for all cell). Notice that the peak
of σ2

X occurs always at cm ≃ 2.08 clearly announcing the coming shift. We observe two additional
remarkable facts. First, the peak in σ2

X is always narrower for the backward transition than in
the forward transition. Second, the width of the hysteresis loop and the height of the peak of the
variance both decrease with d, this is expected since diffusion tends to mitigate heterogeneities
approaching to MF behaviour.
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Figure 1. Grazing model: 〈X〉 (filled curves) and σ2
X (dashed curves) for 〈K〉 = 7.5 & δK = 2.5,

computed for forward (black) and backward (gray) changes of the control parameter c. Results
for d=0 (above), d=0.1 (middle) and d=0.5 (below).

3.1.2. Patchiness: Cluster structure In the upper row of figure 2 we show colour maps
illustrating the state of the system just at c = cm = 2.08 for d=0.1 and d=0.5. Red (blue)
cells correspond to high (low) density of vegetation. As expected, the domain structure becomes
more clear as d grows allowing greater segregation.

In order to study the cluster structure we must define a threshold Xm as a reference for
the grid values X(i, j). This Xm can be either local, as for example the value of the unstable
root that separates the two attractors at each cell, or global e.g. the spatial average of these
unstable roots or even the arithmetic mean of both attractors (we checked that these alternative
choices do not introduce substantial changes). Thus, cells with X above (below) Xm belong to
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Figure 2. Grazing model: Above: A snapshot at c = cm = 2.08 showing a portion of 100×100
cells, from the original 800× 800 lattice, for 〈K〉 = 7.5. Left (right) panel correspond to d = 0.1
(d = 0.5). Below: The corresponding patch-size distributions measured on the entire 800 × 800
lattice.

clusters of high (low) concentration of biomass. The value of 〈X〉 corresponding to cm ≈ 2.08
is 〈X〉cm

≈ 2.84 and we will take it as the threshold. In the lower row of figure 2 we show the
corresponding patch-size distributions for d=0.1 and d=0.5. Notice that they follow a power
law N(s)∼s−γ over more than two decades, which disappears for smaller or greater values of c
e.g. for c = cm ± 0.1 (not shown). Therefore this particular distribution may be considered as a
signature of an upcoming catastrophic shift in the system. It is remarkable that for d=0.5, γ ≃
1.19 and thus it is precisely in the range found by Kéfi et al for arid Mediterranean ecosystems
[16]. Namely between γ=1.06 (for Greece) and γ = 1.23 (for Spain). For d=0.1 the exponent
becomes a little larger, around 1.34.

3.2. Harvesting Model
Variations of the average carrying capacity 〈K〉 produce hysteresis cycles shown in figure 3
together with the spatial variance σ2

X for d = 0.1 and c=2.4.
In figure 4 we show, also for d = 0.1 and c=2.4, G2(R) measured over the forward variation
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Figure 3. Harvesting model: 〈X〉 (filled curves) and σ2
X (dashed curves) for c =2.4 and d=0.1,

computed for forward (black) and backward (gray) changes of the control parameter c.

of 〈K〉 (from 4.5 to 15) at different values of 〈K〉. Notice that the correlation increases as the
average carrying capacity increases unil the correlation length, ξ, becomes maximum when 〈K〉m
= 12.35 (i.e. it coincides with the maximum of σ2

X). It is remarkable that for a wide range of
values of 〈K〉 (relatively far from 〈K〉m), the correlation length is greater than 1 lattice spacing
(ξ=1.4 for 〈K〉=10.35).

4. Usefulness of the spatial early warnings

To determine the usefulness of the warning indicators presented in the previous section it is
necessary first to assess their practicality and second if they really allow the implementation of
corrective actions to avoid the catastrophic shift.

Concerning the question of the practicity of measurements: Calculating variances over grids
consisting in a large number of sites (e.g. 400×400 or 800×800) is easy on a computer but
involve a formidable task of field data acquisition. So, in order to assess the practical difficulty
of estimating σ2

X , we have performed calculations over sample grids of different sizes Ls < L.
In figure 5 we show for the grazing model that the signal does not depend qualitatively on the
number of points on the grid that are considered to estimate σ2

X . In fact, even for a very small
sample of 9 points, σ2

X still exhibits a noticeable peak. Of course, the quality of the signal
improves with the size of the sample.

In figure 6 we show spatial variances for the harvesting model computed on 5×5 lattices for
forward and backward shifts. Again the signal remains quite clear.

Additionally, since the data from real ecosystems may be very noisy, it is worth considering
how the presence of noise alters results. So we assume some level of noise by adding to c a
random value belonging to some interval [−δc, δc]. In figure 7 we show 〈X〉 and σ2

X for δc = 0.5.
The rise of σ2

X and the anticipation to the temporal variance are still observed.
In relation to possible remedial actions, we will study the consequences of a simple, at least

theoretically, corrective measure consisting in immediately stopping the increase of the control
parameter after it reaches some threshold value c∗. In figure 8 we show the effect of keeping c
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Figure 4. Harvesting model: G2 vs. the distance R for c =2.4 and d=0.1, computed for forward
changes of 〈K〉 and their corresponding exponential fits ∼ e−ξ/R.
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Figure 5. Harvesting model: σ2
X for d = 0.1, 〈K〉 = 7.5, δK = 2.5 calculated on lattices of size

Ls=3 (dotted line), Ls=10 and Ls=400 (the entire lattice).
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Figure 6. Harvesting model: 〈X〉 (filled curves) and σ2
X (dashed curves) for c =2.4 and d=0.1,

computed for forward (black) and backward (gray) changes of the control parameter c for a 5×5
sample lattice.
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Figure 7. Grazing model: 〈X〉 (black) and σ2
X (blue) for a random noise of amplitude δc = 0.5.

constant to c∗ for different values of c∗ and d. For instance, if the measure is applied at the very
position of the peak of σ2

X , c∗ = cm ≃ 2.08 (〈K〉 = 7.5), its usefulness depends on the value of
d. For d small (d = 0.1) the decay in 〈X(t)〉 stabilizes soon to a value above 2 i.e. the system
remains in a mixed state. On the other hand, for larger values of d (d = 0.5) the decay in 〈X(t)〉
continues and the ecosystem passes to the alternative state with low biomass, 〈X(t)〉 < 1. This
figure also shows that, for d = 0.5, the remedial measure is effective when applied before σ2

X
reaches its maximum at cm, for c∗ = 1.9. We checked that, for moderate or high diffusion (d
>∼ 0.5), this recipe of management works if c∗ is taken between the line corresponding to SM

and the right fold line of SB (closer to the first than to the second one). So a possible criterion
to choose c∗ is as the points belonging to SM .

We conclude this section discussing examples of alternative intervention strategies that have
been carried out in practice to avoid ASS shifts in different ecosystems as well as potential
measures to drive an ecological system back to the original desired ASS.

Fishing pressure is the prime reason that many fish stocks around the world have been strongly
reduced [24]. Management has often failed to achieve sustainability. This failure is primarily
due to continually increasing harvest rates and the intrinsic uncertainty in predicting the harvest
that will cause population collapse. Models suggest that the mechanism of exploitation can by
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Figure 8. 〈X〉 (black) and σ2
X (blue) for 〈K〉 = 7.5 in the case of a remedial action consisting

in keeping constant the control parameter after it reaches some threshold value c∗. The red line
indicates a threshold c∗ coinciding with the peak of σ2

X , c∗ = cm ≃ 2.08. Full (dashed) curves
correspond to d=0.1 (d=0.5). The green line points a value of c∗ before cm, c∗ = 1.9; in this
case we get, for d=0.1, the dotted curves.

itself cause the overexploited state to be an ASS [25]. In that sense, cod populations represent a
well-known example of how an economically important fish stock can crash in a dramatic way.
However, the lack of recovery decades after the closure of fisheries on Newfoundland cod has
raised the question of whether other mechanisms may keep collapsed stocks from recovering. For
example, it has been hypothesized that a threshold population of adult stock is needed to control
potential predators and competitors of their offspring [26]. Indeed, size structure predator prey
interactions may well lead to Allee effects that make it difficult to recover once the population
passes this critical threshold [27].

It is interesting that a similar situation occurs for the case of overgrazing in the dry-lands
which could cause a stable overexploited state. Some degraded lands did not seem to recover
upon removal of the animals, and it was found that an additional positive feedback (between
soil condition and vegetation presence) can probably keep the system irreversibly trapped in the
degraded state [28].

Another well studied problem is the restoration of non-vegetated turbid shallow lakes to
a clear vegetated state (something which sounds good in theory but can be very difficult to
achieve in practice). The pristine state of shallow lakes is in general one of clear water and a
rich aquatic vegetation, which contribute to preserve this state. Nutrient loading, mainly due
to the input of fertilizers from surrounding lands, used for agriculture or farming, has changed
this situation in many cases. The increase of nutrients loading rate plays a similar role to the
one played by the increase in the consumption rate in harvesting and fisheries, promoting a shift
to an undesired ASS. As lakes shift from clear to turbid, submerged plants disappear. A later
reduction of the nutrient loading may have little effect in restoring the clear water sate since,
during the eutrophication enrichment period, a large amount of phosphorus has been absorbed
by the sediments. Thus a reduction of the external loading is often compensated by ’internal
loading’, delaying the response of the lake water concentration to the reduction of external
loading. Therefore, in many cases, nutrient reduction alone may be insufficient to restore the
clear state in shallow lakes. Additional “indirect” measures such as removal of part of the fish
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stock and alteration of the water level have been successfully used as a way to break the feedback
that keeps such lakes turbid.

The three examples mentioned demonstrate that the restoration of the original conditions
demand strong efforts and often the probability of success can be quite low. An increase of the
resilience capacity of ecosystems is the easiest and cheaper way to sustain their critical services
like food or water.

5. Analyzing Ecosystem Shifts by using Catastrophe Theory

A general formalism for treating these catastrophic regime shifts in MF is the Elementary
Catastrophe Theory (ECT) developed by R. Thom [29]. However, ECT works for static and
homogeneous (MF) systems, where there is no time or spatial dependence of the potential. To
discuss dynamics or local properties, ECT must be extended by incorporating some external
assumptions. A change of the control parameter, reflecting changes of the external conditions,
modifies the form of the potential. Therefore, as the shape of the potential changes, an original
global minimum in which the system sits may become a metastable local minimum because
other minimum assumes a lower value, or it even may disappear. In this case the system must
jump from the original global minimum to the new one. ECT does not tell us when, and to
which minimum, the jump occurs. A criterion to elucidate this is called, in the Catastrophe
Theory parlance, a convention. The grazing model will serve us to illustrate the effects of the
heterogeneity , diffusion and a varying control parameter (c) in modifying the predicitons of
ECT.

5.1. Delay vs Maxwell Conventions
The MF ‘phase diagram’ for the grazing model in the K-c plane is given by the so-called
bifurcation set SB [30]. This is the set of points at which equilibria are either created or
destroyed. Therefore it divides the phase space into two regions corresponding either to single
stability (one attractor) or bistability (two competing attractors or ASS) (see figure 9). For the
(c, K) points on this curve the second derivative of the potential (2) vanishes, so the bifurcation
set is given in its parametric form by:

c =
(x2

1 + 1)2

2x3
1

, K =
2x3

1

x2
1
− 1

for x1 > 1. (10)

SB has a cusp point at c = 8/33/2, Kc = 33/2 ≃ 5.196. The attractor to the left (right) of SB

corresponds to high (low) biomass.
Before discussing conventions we need to introduce another important set of points in

parameter space which control structural changes of the potential. This second set of points is
called the Maxwell set SM [30]. On SM the values of the potential V at two or more stable
equilibria are equal. In our case it is defined by:

(

dVg

dX

)

x1,x2

= 0 (11)

Vg(x1) = Vg(x2), (12)

and is the dashed curve in figure 9.
SB and SM are connected to two commonly applied criteria or conventions. Systems which

remain in the equilibrium that they are in until it disappears are said to obey the delay
convention. On the other hand, systems which always seek a global minimum of V are said
to obey the Maxwell convention. Indeed these two conventions correspond to two extremes in a
continuum of possibilities. Furthermore, real systems may obey either of these two conventions
depending on the rate of change of the control parameters or on other external conditions (see
next subsection).
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Figure 9. Bifurcation set (solid line) and Maxwell set (dashed) for the grazing model. The line
of triangles denote a path at constant 〈K〉 = 7.5, it intersects SB at two points cLB=1.7079 and
cRB=2.0195.

5.2. The effects of Heterogeneity, Diffusion and Varying Consumption
In our simulations we start from c=1, which is at the left of SB i.e. with the ecosystem in the
upper biomass attractor. Then, increasing the consumption rate c along an horizontal line of
constant 〈K〉 (above Kc) in 1000 time steps SB is traversed until c=3, at the right of SB, where
the ecosystem is in the lower biomass attractor.

We found that within the bistability region, under the above conditions, the ecosystem
remains always in the upper attractor or very close to it. The transition to the lower attractor
occurs for values of c at the right of SB and not just over it right component (where the
upper attractor disappears). This ’delay’ occurs because, since c is increasing, the state of the
ecosystem at time t reflects smaller (earlier) values of the control parameter. In other words, in
the case of constant c, within the region delimited by SB the ecosystem should be in a mixed
state and immediately at the right component of SB all the ecosystem should be in the lower
attractor. In fact we found this is true only when δK and d are equal to zero: the spatial
heterogeneity together with diffusion modify this.

In order to dissect the effects of the three combined factors -spatial heterogeneity, diffusion
and varying consumption rate- we analyze them by separate. That is, we proceed by steps: in
the first step we consider the simplest situation, i.e. an homogeneous non diffusive and static
system, and we add at the other two steps, one by one, the remaining factors. So, starting from
a random configuration of X(i, j), depending on the situations listed below, the outcomes within
the region delimited by SB are as follows.
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• Homogeneous non diffusive and static system i.e. δK=0 (i.e. K=7.5 for all cells), d=0 and
dc/dt = 0: Bistable state. In this simplest situation the ecosystems displays a two-colour
state. That is, depending if the initial value of X for each cell is above or below the unstable
root separating both attractors for the given value of c, this cell adopts respectively the
upper or lower attractors. For instance, over the right component of SB, c = cRB, X
takes only two values for all the cells: Xu = 3.455 (upper attractor) or Xl = 0.637 (lower
attractor), as shown in figure 10-A. Just at the right of this curve, c = c+

RB, the whole
ecosystem collapses to its lower attractor.

Figure 10. Snapshots at c = cRB showing a portion of 100×100 cells, from the original 800×800
lattice, for the three different situations listed in the text. The black arrow points to the value
of the upper attractor at c = cRB: Xu=3.455.

• Dynamic but homogeneous system i.e. δK=0, either with d=0 or d > 0, and dc/dt > 0:
Homogeneous state (upper attractor). Now, the point representing the system in figure 9
starts at the single upper attractor region c < cLB. As c increases, the ecosystem quickly
adopts an homogeneous state coinciding with the corresponding upper attractor. When it
enters the region delimited by SB it ”keeps memory” and remains in the upper attractor
state. In figure 10-B it is shown this for c = cRB for which the whole ecosystem adopted
a state of X(i, j) ≃ 3.816 ∀(i, j) which is slightly higher than Xu. This small difference
is explained by the reaction delay mentioned above (i.e. if c is freezed to cRB all the cells
converge to Xu). The homogeneity of the state persists even after the ecosystem traversed
the entire region delimited by SB and the transition to the lower attractor occurs for c > cRB

in a quite gradual and soft way.
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• Heterogeneous diffusive dynamic system i.e. δK >0, d >0, dc/dt > 0: Quasi upper attractor.
In this ordinary situation, the underlying heterogeneity of the environment leads to an
heterogeneous state. However, at least on average, this state is much more closer to the
upper attractor than to the lower one: for c = cRB 〈X(i, j)〉 ≃ 3.41 which is slightly lower
than Xu, the value of the corresponding upper attractor (see figure 10-C).

5.3. Comparison between Shifts in Ecosystems and the Phenomenology of Thermodynamic
Phase Transitions
Some of the characteristic fingerprints or ’wave flags’ for catastrophes are: modality, sudden
jumps, hysteresis and a large or anomalous variance [30]. These are precisely the signals we
found for the considered spatial heterogeneous ecological models representing a species or set of
species subject to exploitation (either grazing or harvesting).

It is interesting to analyze similarities and differences with the liquid-vapour transition in a
fluid, like water. Therefore, the biomass density X would correspond to the fluid density, the
liquid to the high biomass density attractor and the vapour to the low biomass density attractor.
Let us compare the above catastrophe flags for the fluid vs. the ecosystem:

• Modality: The fluid is bimodal in the neighbourhood of the liquid-gas coexistence curve,
having well defined liquid and gas states (bubbles in liquid or droplets in vapour). So this
is similar in both systems.

• Sudden Jumps: In the case of the fluid it is certainly true that sudden jumps occur, since
there is an abrupt increase in volume when a liquid transforms into vapour. However, this
large change in volume occurs when a slight change in the temperature and pressure moves
the fluid from one side of the coexistence curve to the other. Hence, the liquid-vapour
coexistence curve can be identified with SM and the water changes of state obey in general
the Maxwell convention.
On the other hand, the shift in the considered model always obeys the delay convention:
the ecosystem remains in the higher attractor (higher values of X) until the bifurcation
set is completely traversed. However, when perturbations are big enough they can allow
the switching between equilibria on different stability branches, the systems may follow
the Maxwell convention. We have checked that the effect of a sudden perturbation of the
environment, represented for example by a sharp decrease of the average carrying capacity
〈K〉 followed by a slow recovery, produces a change of convention: from delay to Maxwell
[31].

• Hysteresis: In everyday situations one does not observe hysteresis in the liquid-gas phase
transition of water: the liquid usually boils at the same temperature at which the vapour
condenses. In other words, water changes of state obey in general the Maxwell convention.
Nevertheless, a careful experimentalist can obtain an hysteresis cycle by first raising the
temperature and superheating the liquid, and after evaporation, cooling the gas below the
condensation point. Indeed the coexistence curve is surrounded by two spinodal lines which
determine the limits to superheating and supersaturation. These spinodal or fold lines can
then be identified with SB.

• Anomalous Variance: When a fluid condenses (boils) from its gas (liquid) to its liquid (gas)
state, small droplets (bubbles) are formed. As a consequence, the variance of the volume
may become large, similarly to what happens for the ecosystem.
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